Contact for the resource

National Aeronautics and Space Administration (NASA)

203 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
From 1 - 10 / 203
  • This dataset contains Global Precipitation Measurements (GPM) Integrated Multi-satellitE Retrievals (IMERG) v5. The Integrated Multi-satellitE Retrievals for GPM (IMERG) is the unified U.S. algorithm that provides the Day-1 multi-satellite precipitation product. The precipitation estimates from the various precipitation-relevant satellite passive microwave (PMW) sensors comprising the GPM constellation are computed using the 2014 version of the Goddard Profiling Algorithm (GPROF2014), then gridded, intercalibrated to the GPM Combined Instrument product, and combined into half-hourly 10x10 km fields. The Global Precipitation Measurement (GPM) mission is an international network of satellites that provide the next-generation global observations of rain and snow.

  • This dataset contains output from the TMPA (TRMM Multi-satellite Precipitation) Algorithm, and provides precipitation estimates in the TRMM regions that have the (nearly-zero) bias of the ”TRMM Combined Instrument” precipitation estimate and the dense sampling of high-quality microwave data with fill-in using microwave-calibrated infrared estimates. The granule size is 3 hours. The Tropical Rainfall Measuring Mission (TRMM) was a joint mission between NASA and the Japan Aerospace Exploration (JAXA) Agency to study rainfall for weather and climate research.

  • These data are a copy of MODIS data from the NASA Level-1 and Atmosphere Archive & Distribution System (LAADS) Distributed Active Archive Center (DAAC). The copy is potentially only a subset. Below is the description from https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MOD35_L2 " The MODIS Cloud Mask product is a Level-2 product generated at 1-km and 250-m (at nadir) spatial resolutions. The algorithm employs a series of visible and infrared threshold and consistency tests to specify confidence that an unobstructed view of the Earth's surface has been observed. An indication of shadows affecting the scene is also provided. The 250-m cloud mask flags are based on visible channel data only. Radiometrically-accurate radiances are required, thus holes in the Cloud Mask will appear wherever the input radiances are incomplete or of poor quality assurance. There are two MODIS Cloud Mask data product files: MOD35_L2, containing data collected from the Terra platform; and MYD35_L2, containing data collected from the Aqua platform. The MODIS cloud mask algorithm employs a battery of spectral tests, which use methodology applied in the AVHRR Processing scheme Over cLoudy Land and Ocean (APOLLO), International Satellite Cloud Climatology Project (ISCCP), CLoud Advanced Very high resolution Radiometer (CLAVR), and the Support of Environmental Requirements for Cloud Analysis and Archive (SERCAA) algorithms to identify cloudy FOVs. From these, a clear-sky confidence level (high confident clear, probably clear, undecided, cloudy) is assigned to each FOV. For inconclusive results, spatial- and temporal-variability tests are applied. The spectral tests rely on radiance (temperature) thresholds in the infrared and reflectance thresholds in the visible and near-infrared. Thresholds vary with surface type, atmospheric conditions (moisture, aerosol, etc.), and viewing geometry. In addition to the MOD02 calibrated radiances, a 1-km land/water mask, DEM, ecosystem analysis, snow/ice cover map, NCEP analysis of surface temperature and wind speed, and an estimate of precipitable water are required as inputs. A determination of the presence of global cloudiness is essential to the MODIS mission for two reasons. First, clouds play a critical role in the radiative balance of the Earth and must be accurately described to assess climate and potential climate change. Second, the presence of cloudiness must be accurately determined to properly retrieve many atmospheric and surface parameters. For many of these retrieval algorithms even thin cirrus represents contamination. Cloud mask validation will be conducted using MODIS Airborne Simulator (MAS) data from several field campaigns, all-sky cameras, and comparison with NOAA operational instruments and possibly ASTER. For additional details see the MODIS Atmospheres web site page onCollection 6.1 Updates. " Shortname: MOD35_L2 , Platform: Terra , Instrument: MODIS , Processing Level: Level-2 , Spatial Resolution: 250 m, 1 km , Temporal Resolution: 5 minute , ArchiveSets: 61 , Collection: MODIS Collection 6.1 - Level 1, Atmosphere, Land (ArchiveSet 61) , PGE Number: PGE03 , File Naming Convention: MOD35_L2.AYYYYDDD.HHMM.CCC.YYYYDDDHHMMSS.hdf YYYYDDD = Year and Day of Year of acquisition HHMM = Hour and Minute of acquisition CCC = Collection number YYYYDDDHHMMSS = Production Date and Time AYYYYDDD = Year and Day of Year of acquisition , Citation: Ackerman, S., et al., 2015. MODIS Atmosphere L2 Cloud Mask Product. NASA MODIS Adaptive Processing System, Goddard Space Flight Center, USA: http://dx.doi.org/10.5067/MODIS/MOD35_L2.061 , Keywords: Cloud Fraction, Climate Change, Atmospheric Correction

  • These data are a copy of MODIS data from the NASA Level-1 and Atmosphere Archive & Distribution System (LAADS) Distributed Active Archive Center (DAAC). The copy is potentially only a subset. Below is the description from https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MOD14A1 MODIS Thermal Anomalies/Fire products are primarily derived from MODIS 4- and 11-micrometer radiances. The fire detection strategy is based on absolute detection of a fire (when the fire strength is sufficient to detect), and on detection relative to its background (to account for variability of the surface temperature and reflection by sunlight). Numerous tests are employed to reject typical false alarm sources like sun glint or an unmasked coastline. MOD14A1 is produced every 8 days at 1-kilometer resolution as a gridded level-3 product in the Sinusoidal projection. This product is unique in that it has three dimensions: fire-mask (1D) and a maximum fire-radiative-power (2D) are provided for each day (3D) in the 8-day period. For example, the fire-mask contains eight, band sequential (day) 1200 x 1200 images of fire data representing consecutive days of data collection. The Terra MODIS instrument acquires data twice daily (10:30 AM and PM), as does the Aqua MODIS (1:30 PM and AM). These four daily MODIS fire observations serve to advance global monitoring of the fire process and its effects on ecosystems, the atmosphere, and climate. Collection-5 MODIS/Terra Thermal Anomalies/Fire products are Validated Stage 3, meaning that uncertainties in the product and its associated structure are well quantified from comparison with reference in situ or other suitable reference data. These data are ready for use in scientific publications. Shortname: MOD14A1 , Platform: Terra , Instrument: MODIS , Processing Level: Level-3 , Spatial Resolution: 1 km , Temporal Resolution: daily , ArchiveSets: 6 , Collection: MODIS Collection 6 (ArchiveSet 6) , PGE Number: PGE29 , File Naming Convention: MOD14A1.AYYYYDDD.hHHvVV.CCC.YYYYDDDHHMMSS.hdf YYYYDDD = Year and Day of Year of acquisition hHH = Horizontal tile number (0-35) vVV = Vertical tile number (0-17) CCC = Collection number YYYYDDDHHMMSS = Production Date and Time , Citation: Louis Giglio, Chris Justice - University of Maryland and MODAPS SIPS - NASA. (2015). MOD14A1 MODIS/Thermal Anomalies/Fire Daily L3 Global 1km SIN Grid. NASA LP DAAC. http://doi.org/10.5067/MODIS/MOD14A1.006 , Keywords: Climate Change, Land Surface Temperature, Fires

  • These data are a copy of MODIS data from the NASA Level-1 and Atmosphere Archive & Distribution System (LAADS) Distributed Active Archive Center (DAAC). The copy is potentially only a subset. Below is the description from https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MYD03 The MYD03 product inculdes the geolocation fields that are calculated for each 1 km MODIS Instantaneous Field of Views (IFOV) for all orbits daily. The locations and ancillary information correspond to the intersection of the centers of each IFOV from 10 detectors in an ideal 1 km band on the Earth's surface. A digital terrain model is used to model the Earth's surface. The main inputs are the spacecraft attitude and orbit, the instrument telemetry and the digital elevation model. The geolocation fields include geodetic Latitude, Longitude, surface height above the geoid, solar zenith and azimuth angles, satellite zenith and azimuth angles, and a land/sea mask for each 1 km sample. Additional information is included in the header to enable the calculation of the approximate location of the center of the detectors for any of the 36 MODIS bands. This product is used as input by a large number of subsequent MODIS products, particularly those produced by the Land team. Shortname: MYD03 , Platform: Aqua , Instrument: MODIS , Processing Level: Level-1A , Spatial Resolution: 1 km , Temporal Resolution: 5 minute , ArchiveSets: 61, 6 , Collection: MODIS Collection 6.1 - Level 1, Atmosphere, Land (ArchiveSet 61) , PGE Number: PGE01 , File Naming Convention: MYD03.AYYYYDDD.HHMM.CCC.YYYYDDDHHMMSS.hdf AYYYYDDD = Acqusition Year and Day of Year HHMM = Hour and Minute of acquisition CCC = Collection number YYYYDDDHHMMSS = Production Date and Time YYYYDDD = Year and Day of Year of acquisition , Citation: MODIS Characterization Support Team (MCST), 2017. MODIS Geolocation Fields Product. NASA MODIS Adaptive Processing System, Goddard Space Flight Center, USA: http://dx.doi.org/10.5067/MODIS/MYD03.061

  • These data are a copy of MODIS data from the NASA Level-1 and Atmosphere Archive & Distribution System (LAADS) Distributed Active Archive Center (DAAC). The copy is potentially only a subset. Below is the description from https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MYD11A2 The level-3 MODIS Land Surface Temperature and Emissivity (LST/E) 8-day data products are composed of data from the daily 1-kilometer LST product (MYD11A1) and stored on a 1-km Sinusoidal grid as the average values of clear-sky LSTs during an 8-day period. MYD11A2 is comprised of daytime and nighttime LSTs, quality assurance assessment, observation times, view angles, bits of clear sky days and nights, and emissivities estimated in Bands 31 and 32 from land cover types. Collection-5 MODIS/Aqua Land Surface Temperature/Emissivity products are validated to Stage 2, which means that their accuracy has been assessed over a widely distributed set of locations and time periods via several ground-truth and validation efforts. Further details regarding MODIS land product validation for the LST/E products are available from the following URL: http://landval.gsfc.nasa.gov/ProductStatus.php?ProductID=MYD11. Shortname: MYD11A2 , Platform: Aqua , Instrument: MODIS , Processing Level: Level-3 , Spatial Resolution: 1 km , Temporal Resolution: 8 day , ArchiveSets: 6, 61 , Collection: MODIS Collection 6 (ArchiveSet 6) , PGE Number: PGE31 , File Naming Convention: MYD11A2.AYYYYDDD.hHHvVV.CCC.YYYYDDDHHMMSS.hdf YYYYDDD = Year and Day of Year of acquisition hHH = Horizontal tile number (0-35) vVV = Vertical tile number (0-17) CCC = Collection number YYYYDDDHHMMSS = Production Date and Time , Citation: Zhengming Wan - University of California Santa Barbara, Simon Hook, Glynn Hulley - JPL and MODAPS SIPS - NASA. (2015). MYD11A2 MODIS/Aqua Land Surface Temperature and the Emissivity 8-Day L3 Global 1km SIN Grid. NASA LP DAAC. http://doi.org/10.5067/MODIS/MYD11A2.006 , Keywords: Climate Change, Land Surface Temperature, Emissivity, Fires

  • These data are a copy of MODIS data from the NASA Level-1 and Atmosphere Archive & Distribution System (LAADS) Distributed Active Archive Center (DAAC). The copy is potentially only a subset. Below is the description from https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MYD06_L2 The MODIS Level-2 Cloud product consists of cloud optical and physical parameters. These parameters are derived using remotely sensed infrared, visible and near infrared solar reflected radiances. MODIS infrared channel radiances are used to derive cloud top temperature, cloud top height, effective emissivity, cloud phase (ice vs. water, opaque vs. non-opaque), and cloud fraction under both daytime and nighttime conditions. MODIS visible radiances are used to derive cloud optical thickness and effective particle radius and cloud shadow effects. Near-infrared solar reflected radiance provides additional information for the retrieval of cloud particle phase (ice vs. water, clouds vs. snow). The shortname for this Level-2 MODIS cloud product is MYD06_L2. MYD06_L2 consists of parameters at a spatial resolution of either 1km or 5km (at nadir). Each MYD06_L2 product file covers a 5-minute time interval. This means that for 5km resolution parameters, the output grid is 270 pixels wide by 406 pixels in length. Every tenth granule has an output grid size of 270 by 408 pixels. For 1-km resolution parameters, the output grid is 1354 pixels in width by 2030 pixels in length and every tenth granule has an output grid size of 1354 by 2040 pixels. MYD06_L2 product files are stored in Hierarchical Data Format (HDF-EOS). All gridded cloud parameters are stored as Scientific Data Sets (SDS) within the file, except two (band number and statistics). These are stored as Vdata (table arrays). Approximately 288 files are produced daily. Nighttime files are smaller than their daytime counterparts since only the cloud top properties are retrieved at night. The MODIS Cloud Product will be used to investigate seasonal and inter-annual changes in cirrus (semi-transparent) global cloud cover and cloud phase with multispectral observations at 1km spatial resolution. For additional details see the MODIS Atmospheres web site page onCollection 6.1 Updates. Shortname: MYD06_L2 , Platform: Aqua , Instrument: MODIS , Processing Level: Level-2 , Spatial Resolution: 1 km , Temporal Resolution: 5 minute , ArchiveSets: 61 , Collection: MODIS Collection 6.1 - Level 1, Atmosphere, Land (ArchiveSet 61) , PGE Number: PGE06 , File Naming Convention: MYD06_L2.AYYYYDDD.HHMM.CCC.YYYYDDDHHMMSS.hdf AYYYYDDD = Acqusition Year and Day of Year HHMM = Hour and Minute of acquisition CCC = Collection number YYYYDDDHHMMSS = Production Date and Time AYYYYDDD = Year and Day of Year of acquisition , Citation: Platnick, S., Ackerman, S., King, M., et al., 2015. MODIS Atmosphere L2 Cloud Product (06_L2). NASA MODIS Adaptive Processing System, Goddard Space Flight Center, USA: http://dx.doi.org/10.5067/MODIS/MYD06_L2.061 , Keywords: Water Vapor, Precipitable Water

  • These data are a copy of MODIS data from the NASA Level-1 and Atmosphere Archive & Distribution System (LAADS) Distributed Active Archive Center (DAAC). The copy is potentially only a subset. Below is the description from https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MYD04_L2 "The MODIS Aerosol Product monitors the ambient aerosol optical thickness over the oceans globally and over a portion of the continents. Further, the aerosol size distribution is derived over the oceans, and the aerosol type is derived over the continents. Daily Level-2 data are produced at the spatial resolution of a 10x10 1-km pixel array (at nadir). Prior to MODIS, satellite measurements were limited to reflectance measurements in one (GOES, METEOSAT) or two (AVHRR) channels. There was no real attempt to retrieve aerosol content over land on a global scale. Algorithms had been developed for use only over dark vegetation. The blue channel on MODIS, not present on AVHRR, offers the possibility to extend the derivation of optical thickness over land to additional surfaces. The algorithms use MODIS bands 1 through 7 and 20 and require prior cloud screening using MODIS data. Over the land, the dynamic aerosol models are derived from ground-based sky measurements and used in the net retrieval process. Over the ocean, three parameters that describe the aerosol loading and size distribution are retrieved. Pre-assumptions on the general structure of the size distribution are required in the inversion of MODIS data, and the volume-size distribution is described with two log-normal modes: a single mode to describe the accumulation mode particles (radius < 0.5 µm) and a single coarse mode to describe dust and/or salt particles (radius > 1.0 µm). The quality assurance control of these products will be based on comparison with ground stations and climatology. For additional details see the MODIS Atmospheres web site page onCollection 6.1 Updates. " Shortname: MYD04_L2 , Platform: Aqua , Instrument: MODIS , Processing Level: Level-2 , Spatial Resolution: 10 km , Temporal Resolution: 5 minute , ArchiveSets: 61 , Collection: MODIS Collection 6.1 - Level 1, Atmosphere, Land (ArchiveSet 61) , PGE Number: PGE04 , File Naming Convention: MYD04_L2.AYYYYDDD.HHMM.CCC.YYYYDDDHHMMSS.hdf YYYYDDD = Year and Day of Year of acquisition HHMM = Hour and Minute of acquisition CCC = Collection number YYYYDDDHHMMSS = Production Date and Time AYYYYDDD = Year and Day of Year of acquisition , Citation: Levy, R., Hsu, C., et al., 2015. MODIS Atmosphere L2 Aerosol Product. NASA MODIS Adaptive Processing System, Goddard Space Flight Center, USA: http://dx.doi.org/10.5067/MODIS/MYD04_L2.061 , Keywords: Climate Change, Atmospheric Correction, Aerosol Optical Depth/Thickness

  • These data are a copy of MODIS data from the NASA Level-1 and Atmosphere Archive & Distribution System (LAADS) Distributed Active Archive Center (DAAC). The copy is potentially only a subset. Below is the description from https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MOD06_L2 The MODIS Level-2 Cloud product consists of cloud optical and physical parameters. These parameters are derived using remotely sensed infrared, visible and near infrared solar reflected radiances. MODIS infrared channel radiances are used to derive cloud top temperature, cloud top height, effective emissivity, cloud phase (ice vs. water, opaque vs. non-opaque), and cloud fraction under both daytime and nighttime conditions. MODIS visible radiances are used to derive cloud optical thickness and effective particle radius and cloud shadow effects. Near-infrared solar reflected radiance provides additional information for the retrieval of cloud particle phase (ice vs. water, clouds vs. snow). The shortname for this Level-2 MODIS cloud product is MOD06_L2. MOD06_L2 consists of parameters at a spatial resolution of either 1km or 5km (at nadir). Each MOD06_L2 product file covers a 5-minute time interval. This means that for 5km resolution parameters, the output grid is 270 pixels wide by 406 pixels in length. Every tenth granule has an output grid size of 270 by 408 pixels. For 1-km resolution parameters, the output grid is 1354 pixels in width by 2030 pixels in length and every tenth granule has an output grid size of 1354 by 2040 pixels. MOD06_L2 product files are stored in Hierarchical Data Format (HDF-EOS). All gridded cloud parameters are stored as Scientific Data Sets (SDS) within the file, except two (band number and statistics). These are stored as Vdata (table arrays). Approximately 288 files are produced daily. Nighttime files are smaller than their daytime counterparts since only the cloud top properties are retrieved at night. The MODIS Cloud Product will be used to investigate seasonal and inter-annual changes in cirrus (semi-transparent) global cloud cover and cloud phase with multispectral observations at 1km spatial resolution. For additional details see the MODIS Atmospheres web site page onCollection 6.1 Updates. Shortname: MOD06_L2 , Platform: Terra , Instrument: MODIS , Processing Level: Level-2 , Spatial Resolution: 1 km , Temporal Resolution: 5 minute , ArchiveSets: 61 , Collection: MODIS Collection 6.1 - Level 1, Atmosphere, Land (ArchiveSet 61) , PGE Number: PGE06 , File Naming Convention: MOD06_L2.AYYYYDDD.HHMM.CCC.YYYYDDDHHMMSS.hdf AYYYYDDD = Acqusition Year and Day of Year HHMM = Hour and Minute of acquisition CCC = Collection number YYYYDDDHHMMSS = Production Date and Time AYYYYDDD = Year and Day of Year of acquisition , Citation: Platnick, S., Ackerman, S., King, M., et al., 2015. MODIS Atmosphere L2 Cloud Product (06_L2). NASA MODIS Adaptive Processing System, Goddard Space Flight Center, USA: http://dx.doi.org/10.5067/MODIS/MOD06_L2.061 , Keywords: Water Vapor, Precipitable Water

  • These data are a copy of MODIS data from the NASA Level-1 and Atmosphere Archive & Distribution System (LAADS) Distributed Active Archive Center (DAAC). The copy is potentially only a subset. Below is the description from https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MOD09A1 Shortname: MOD09A1 , Platform: Terra , Instrument: MODIS , Processing Level: Level-3 , Spatial Resolution: 500 m , Temporal Resolution: 8 day , ArchiveSets: 61, 6 , Collection: MODIS Collection 6.1 - Level 1, Atmosphere, Land (ArchiveSet 61) , PGE Number: PGE21